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J.  Phys. A: Math. Gen. 20 (1987) L197-L202. Printed in the U K  

LETTER TO THE EDITOR 

Invariants, characteristics and global geometry of large-n 
renormalisation group trajectories 

D D Vvedensky 
The Blackett Laboratory, Imperial College, London SW7 ZBZ, U K  

Received 14 November 1986 

Abstract. A procedure is described for constructing invariants, characteristics, and non- 
linear scaling fields for large-n differential renormalisation group ( RG) equations. Explicit 
solutions are derived for the Ginsburg-Landau- Wilson and time-dependent Ginsburg- 
Landau models. The characteristics facilitate a natural geometric representation of the R G  

trajectories which, for the static case, takes the form of two-dimensional solution surfaces. 

Non-linear scaling fields have been shown by Nicoll et a1 (1974, 1975, 1976) to be a 
convenient representation of solutions of renormalisation group ( RG) equations and 
to facilitate trajectory integrals that incorporate crossover effects of competing fixed 
points. Furthermore, non-linear scaling fields may be used to construct RG invariants 
to label individual trajectories, thereby producing a quantitative measure of parameter 
space topology, for example, by identifying separatrices and singular points. 

The large-n limit of the classical n-vector model (Stanley 1968) is one case where 
these constructions can be carried out exactly either within the finite-difference recursive 
development of the Wilson RG (Ma 1973, Zannetti and Di Castro 1977) or more 
conveniently within a differential formulation (Wegner and Houghton 1973, Nicoll et 
a1 1976, Busiello et a1 1981, 1983a, b, Vvedensky 1984a). In  fact the differential RG 

(DRG) approach (Wilson and Kogut 1974, Wegner and Houghton 1973, Nicoll and 
Chang 1977, Vvedensky et a1 1983) provides a framework for constructing general 
solutions of large-n RG equations (Vvedensky 1984b) simply by using established 
techniques for partial differential equations (Courant and Hilbert 1962). 

In a recent letter, Busiello et a1 (1986) developed a procedure for systematically 
constructing RG invariants by writing the large-n DRG equations as a Hamilton-Jacobi 
equation and then invoking standard methods of classical mechanics. Here, we show 
(1) that invariants of large-n DRG equations even as complex as those for critical 
dynamics may be constructed by a straightforward application of the method of 
characteristics (Courant and Hilbert 1962), and (2) that the characteristics facilitate a 
natural non-perturbative geometric representation of RG trajectories, which we illustrate 
explicitly for the static case. As an addendum to our earlier work (Vvedensky 1984b), 
we represent the general solutions of large-n DRG equations as generating functions 
for non-linear scaling fields, so demonstrating the explicit relationship between RG 

invariants and non-linear scaling fields for the spherical model. 
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We begin as usual with an isotropic d-dimensional system ( d  < 2) characterised by 
an n-component order parameter I+!J~(X), i = 1, .  . . , n and with the reduced Ginsburg- 
Landau-Wilson Hamiltonian appropriate for the limit n + CO (Ma 1976): 

X =  ~ X [ ( V J I ) ~ + H ( J I ’ ) ]  5 
where 

Defining HI( JI * J I )  = dH/dJ12 and x = JI’/ N, where N = nSd/2(d - 2 ) ( 2 ~ ) ~  and Sd 
is the surface area of a unit d-sphere, the large-n DRG equation is given in terms of 
t (x)  = H ’ ( x N )  by (Busiello et a1 1981, Vvedensky 1984a) 

with the initial condition 

oc 

t ( x ,  0) = puzp(0)(xN)p--’. 
p = l  

We may regard x as a function of t and 1 and rewrite (3) as 

ax ax 2 - d  
a1 a t  i + t  
- = ( d  - 2 ) ~  -2t-++----. 

(3) 

(4) 

( 5 )  

Linearising about the fixed points we find that (3) and ( 5 )  are diagonal at the trivial 
and spherical fixed points, respectively. 

The general solution to (3) and ( 5 )  may be derived by the method of characteristics 
(Courant and Hilbert 1962). The characteristics of (3) are the two-parameter family 
of space curves satisfying the equations 

d x l d s  = P dt /ds  = Q d l l d s  = 1 ( 6 )  

where P = (d -2)(x - 1/(  1 + t ) )  and Q = 2t. The two independent solutions of the 
subsidiary system 

(7) d x / P  = d t / Q  = dl  

yield the invariants (integrals of motion) of (3): 

= t e-2’ (8a)  

Although the solutions (8b) represent a one-parameter family of fixed points of (3) 
(Busiello et a1 1983b), the only stable solution in 2 < d < 4 dimensions is the Ma (1973) 
solution, t2 = 0. 

The characteristics are determined by the family of space curves resulting from the 
intersections of the planes (8). For once-differentiable but otherwise arbitrary functions 
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(% i 

9 ( x ,  y )  and gU(z), a = 1,2, the general solution to (3) is thereby obtained as 9(t1, t2) = 
0, or equivalently as either t1 = ie,(t2) or t2 = g2(5,): 

t li 0: 0; 043 00'7 

I ( 2 - d ) / 2  dz  
x = l + f ( d - 2 ) t  I, %2( t e-2f) 

1 + zt 

where in view of (4) %& =Cazz", where the a: are constants. 

features. Introducing 
There is an alternative form of the general solutions (9) that has some attractive 

52/5'12-d"2) = 0, we obtain 
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(ii) For t > 0 t2 is real, while for t < 0 t2 is imaginary. Nevertheless, there are no 
formal difficulties in considering the range of t to be -1 < t < 03, despite (iii) 

(iii) The singularity of (3) on the plane t = -1, where the equations (8) have no 
solution. As a glance at figure 1( b )  shows, an initial function to defined for -1 < t <CC 

remains in that region for all 1. Indeed, the regions t > 0, - 1  < t < 0, and t = 0 are 
Rc-invariant subspaces. 

(iv) Although the domain of attraction of the spherical fixed point includes all 
functions defined in -1 < t <CO for which t o ( l )  = 0, the analytic properties are not 
necessarily preserved along the RG trajectory. For example, there may appear inter- 
mediate functions at some f'> I for which the quantity t'(1, f') becomes unbounded. 
We can avoid this difficulty by confining ourselves to initial distributions for which 
0 < t&( 1) <CO. This point was noted by Ma (1973) but not discussed in any detail. 

For the time-dependent Ginsburg-Landau (TDGL) model we begin with the gen- 
eralised Langevin equation 

where X is given by (1) and ( 2 ) ,  r is a transport coefficient, and the n-component 
Gaussian stochastic term 7 is specified by 

( T i ( X t ) )  = 0 (77i(xt)??r(x't')) = 2 r ( x ) a , j a ( x - x ' ) a ( t -  t ' ) .  (12) 

Introducing the field p canonically conjugate to the 17, the action for the dynamics 
(11) is given by (Chang et a1 1978, SzCpfalusy and TCl 1980a) 

where 

Defining 

1 d + z - 2  y=--i+.+ 1 
N 2 N  d - 2  

x=-+*  + 
where the characteristic time exponent z takes on the mean-field value 4 (resp., 2 )  if 
the order parameter is conserved (resp., not conserved), the large-n DRG equations for 
the TDGL model are given in terms of the quantities t ,  = aA/ax and t2 = aA/ay by 
(Busiello et a1 1983a, Vvedensky 1984a) 

for i = 1, 2, where A ,  = 2 +  z, A 2  = 2, p I  = 2 - d,  and p2 = 2 - d - z, and where 

F = [ ( I  + t,)' - 2 t , ] - ' / 2  G = 1 - (1 + t2)E (17) 

From (14) we see that t , ( x ,  0, I )  = 0, so that if y = 0, the system (16) reduces to the 
static DRG (3). The equations (16) are written in a representation that is diagonal 
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about the trivial fixed point. We may of course write (16) in the spherical fixed point 
representation: 

The four integrals of motion of (16) are given by 
5 I 

2 -  2 f 2  
5 - e - A  I 

5 3  = Alxfp’Al +f( t l ,  t 2 )  

1 -  I t 1  

54= A2yty2’A2+g(t l ,  1 2 )  

where f and g are solutions of 

with the boundary conditions f(0,O) = 0 and g(0, t z )  = 0. The solutions to (20) may 
be written in the form 

The invariants (19) with t3 = t4 = 0 are thus seen to be the non-trivial fixed-point 
solutions derived by SzCpfalusy and TCl (1980b). 

We again define once-differentiable functions 9m(xl, x2) and Y&(xl, x2), a = 1 ,  2 
and introduce the quantities 

q4 = epZ‘t;p>/‘2t4. (22) q3 = ep I -pl/’l 
I t l  6 3  

The general solutions to (16) may thus be represented as generating functions for 
non-linear scaling fields in either the trivial 

t ,  = eAl‘s, ( v3, 774) (23) 

773 = %(51, 5 2 )  774= 3 2 ( 6 1 ,  5 2 ) .  (24) 

or spherical fixed-point representation: 

The techniques applied here may be generalised to large-n DRG equations of 
arbitrary complexity, particularly as the n + CD limit seems to produce systems of 
equations with the same principal part. Thus while there may be pedagogical value 
in drawing a mechanical analogy to large-n DRG equations (Busiello et a1 1986), 
existing methods for solving quasi-linear partial differential equations are well suited 
to deriving invariants, non-linear scaling fields and the global behaviour of RG trajec- 
tories. A further discussion of invariants and characteristics of large-n DRG equations 
will be presented in a subsequent publication. 
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The author thanks Dr T S Chang for valuable discussions. 
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